Saturday, December 31, 2005

7 of Cups (again!)

Last time found me watching The Fisher King (twice!); this time finds me struggling to recall dreams sent by Nephthys, dark sister of Isis: in the first dreaming phase, I remember travelling around India, with an 'Indian' girl I recognised instantly as mythos; in the second phase, someone lectured me about the four daily phases of the sun, from the sun at noon, to Khephra, the dung beetle, at midnight... which kind of made me recall the 3 of Swords in the Voodoo Tarot, with all those beetles scuttling about... Sorrow that, despite presents from you-know-who, and the fact that he seemed quite happy to talk to me last time, this time, after two days delay (first time, they couldn't find him; second time, there seemed no actual connection), he did not want to take the telephone at all again... Sorry, that seems all I can recall: slippery little buggers, these dreams, although the 7 of Cups tends to make us fascinated by imagery, in one form or another; mind you, it could also relate to you-know-who finding himself 'incommunicado' again (which would culminate in an eventual 8 of Cups, of total communication breakdown?): the flip-side of the "siren song"! Now I know the inner meaning of the 7 of Cups, and we should update the Musical Tarot (cos she seems, after all, also a 'musical' card) to read, for the 7 of Cups: "falling in love with love is falling for make-believe/falling in love with love is playing the fool..." ;-P

>Einstein's strangest theory puts quantum joke on him
>Einstein said there would be days like this.
>This fall scientists announced that they had put a
>half-dozen beryllium atoms into a "cat state."
>No, they were not sprawled along a sunny windowsill.
>To a physicist, a "cat state" is the condition of being
>in two diametrically opposed conditions at once, such as
>black and white, up and down, or dead and alive.
>These atoms were each spinning clockwise and counterclockwise
>at the same time. Moreover, like miniature Rockettes, they
>were all doing whatever it was they were doing together, in
>perfect synchrony. Should one of them realize, like the
>cartoon character who runs off a cliff and doesn't fall until
>he looks down, that it is in a metaphysically untenable
>situation and decide to spin only one way, the rest would
>instantly fall in line, whether they were across a test tube
>or across the galaxy.
>The idea that measuring the properties of one particle
>could instantaneously change the properties of another one
>(or a whole bunch) far away is strange to say the least —
>almost as strange as the notion of particles spinning in
>two directions at once. The team that pulled off the
>beryllium feat, led by Dietrich Leibfried at the National
>Institute of Standards and Technology, in Boulder, Colo.,
>hailed it as another step toward computers that would use
>quantum magic to perform calculations.
>But it also served as another demonstration of how weird
>the world really is according to the rules known as quantum
>to read see

And well worth reading, imho, especially for all you "What the Bleep?" buffs. Here I present just the end of the article:

In an essay in 1985, Mermin said "if there is spooky action at a distance, then, like other spooks, it is absolutely useless except for its effect, benign or otherwise, on our state of mind."

He added, "The EPR experiment is as close to magic as any physical phenomenon I know of, and magic should be enjoyed." Recently, he said he still stood by the latter part of that statement. But while spooky action remained useless for sending a direct message, it had turned out to have potential uses, he admitted, in cryptography and quantum computing.

Nine ways of killing a cat

Another debate, closely related to the issues of entanglement and reality, concerns what happens at the magic moment when a particle is measured or observed.

Before a measurement is made, so the traditional story goes, the electron exists in a superposition of all possible answers, which can combine, adding and interfering with one another.

Then, upon measurement, the wave function "collapses" to one particular value. Schroedinger himself thought this was so absurd that he dreamed up a counterexample. What is true for electrons, he said, should be true as well for cats.

In his famous thought experiment, a cat is locked in a box where the decay of a radioactive particle will cause the release of poison that will kill it. If the particle has a 50-50 chance of decaying, then according to quantum mechanics the cat is both alive and dead before we look in the box, something the cat itself, not to mention cat lovers, might take issue with.

But cats are always dead or alive, as Leggett of Illinois said in his Berkeley talk. "The problem with quantum mechanics," he said in an interview, "is how it explains definite outcomes to experiments."

If quantum mechanics is only about information and a way of predicting the results of measurements, these questions don't matter, most quantum physicists say.

"But," Leggett said, "if you take the view that the formalism is reflecting something out there in real world, it matters immensely." As a result, theorists have come up with a menu of alternative interpretations and explanations. According to one popular notion, known as decoherence, quantum waves are very fragile and collapse from bumping into the environment. Another theory, by the late David Bohm, restores determinism by postulating a "pilot wave" that acts behind the scenes to guide particles.

In yet another theory, called "many worlds," the universe continually branches so that every possibility is realized: the Red Sox win and lose and it rains; Schroedinger's cat lives, dies, has kittens and scratches her master when he tries to put her into the box.

Recently, as Leggett pointed out, some physicists have tinkered with Schroedinger's equation, the source of much of the misery, itself.

A modification proposed by the Italian physicists Giancarlo Ghirardi and Tullio Weber, both of the University of Trieste, and Alberto Rimini of the University of Pavia, makes the wave function unstable so that it will collapse in a time depending on how big a system it represents. In his standoff with Ramsay of Harvard last fall, Leggett suggested that his colleagues should consider the merits of the latter theory.

"Why should we think of an electron as being in two states at once but not a cat, when the theory is ostensibly the same in both cases?" Leggett asked.

Ramsay said Leggett had missed the point. How the wave function mutates is not what you calculate. "What you calculate is the prediction of a measurement," he said.

"If it's a cat, I can guarantee you will get that it's alive or dead," Ramsay said.

David Gross, a recent Nobel Prize winner and director of the Kavli Institute for Theoretical Physics in Santa Barbara, leapt into the free-for-all, saying that 80 years had not been enough time for the new concepts to sink in. "We're just too young. We should wait until 2200, when quantum mechanics is taught in kindergarten."

The joy of randomness

One of the most extreme points of view belongs to Zeilinger of Vienna, a bearded, avuncular physicist whose laboratory regularly hosts every sort of quantum weirdness.

In an essay recently in Nature, Zeilinger sought to find meaning in the very randomness that plagued Einstein.

"The discovery that individual events are irreducibly random is probably one of the most significant findings of the 20th century," Zeilinger wrote.

Zeilinger suggested that reality and information are, in a deep sense, indistinguishable, a concept that Wheeler, the Princeton physicist, called "it from bit."

In information, the basic unit is the bit, but one bit, he says, is not enough to specify both the spin and the trajectory of a particle. So one quality remains unknown, irreducibly random.

As a result of the finiteness of information, he explained, the universe is fundamentally unpredictable.

"I suggest that this randomness of the individual event is the strongest indication we have of a reality 'out there' existing independently of us," Zeilinger wrote in Nature.

He added, "Maybe Einstein would have liked this idea after all."

*April the cat stalks off to tinker with the superstring theory, obviously yet another physics theory invented by some cat or other, possibly Schrodinger's: ze vorld consists of things like little bits of string...* Hehe! (But really, I scratch my head, as baffled as Bohr and Einstein, by the quantum weirdness of it all ;-))


Blogger Sebastian Aristos said...

Happy New Year, Claire. I wonder what your dream meant. Do you think you remember enough to make any sense of it ? Why do you think you are dreaming of the phases of the Sun ? I'm sorry to hear that you didn't get hold of Bjorn-Eric. It must be very disappointing when you ring him, and can't get hold of him.

I read all of the article you reproduced about the beryllium atoms, and Schroedinger's cat. While I understand the theory ( mostly ), I'm not sure that I'm in any position to make a coherent comment on it apart from to say that I've read it. I did like the comment at the end of the article though, where the author says that we will have to wait till 2020 for some of the answers, when "quantum physics will be taught in kindergartens".

2:28 pm  
Blogger asgif666 said...

And happy 2006 to you too! ;-))

7:33 pm  

Post a Comment

Links to this post:

Create a Link

<< Home

Hermgirl's Tarot Blog Ring
Join | List | Previous | Next | Random | Previous 5 | Next 5 | Skip Previous | Skip Next